The Hare and the Tortoise: The Network Structure of Exploration and Exploitation

David Lazer, Allan Friedman
David Lazer david_lazer@harvard.edu Allan Friedman allan_friedman@ksg.harvard.edu
John F. Kennedy School of Government, Harvard University

Whether as team members brainstorming, or policy experts sharing best-practices, problem solvers communicate and share ideas. This poster examines the how the structure of these communication networks can affect outcomes. We present simulation results demonstrating that more efficient communication networks can actually lower performance in the long run. This effect is manifest in complex (e.g. rugged) problem spaces, where extensive searches are expensive for the individual. When actors can communicate easily or quickly, average performance improves rapidly improves initially, but harder-to-find optimal solutions are less likely to be discovered.

Acknowledgements: This project is being supported by NSF Grant # 0131923.

The Model: Networked Actors in Complex spaces

- The world is represented as a problem space with peaks of good solutions separated by valleys of inferior solutions. A more rugged space has more peaks and valleys. We model a multi-dimensional rugged problem space using Stuart Kauffman’s NK model for epistatic evolution (Kauffman 1991).

- Actors are extremely myopic, and cannot see the best solution, but can compare the merits of two agents that a single agent can see and the best solution they would be unable to determine if they were the best possible solution.

- The variable of interest is the network structure that determines the number and distribution of agents that a single agent can see and the velocity and synchronicity of information flow.

Results: Linear vs. full networks

- The fully connected network improves quickly, but the linear network outperforms it in the long run. Having more opportunities to share solutions results in a lower outcome. This is because less information sharing preserves heterogeneity in the population, allowing actors to search more of the problem space for a better solution.

- The linear network is the “tortoise” that improves slowly, but ultimately finds a better solution.

- The fully connected network is the “hare” that finds a decent solution quickly, but is unable to fully search the space.

- Heterogeneity of actors in the solution space

- Maximizing the distance between nodes appears to maximize long-term solutions.

- Network Archetypes

- Random Networks (Erdos-Renyi)

- We found a curvilinear relationship between density and final score. Moderately low density measures (p=0.04-0.8) outperformed very low density graphs and higher density graphs.

- Graphs with very low density often contain isolated cliques that reduce average score. If all nodes are not connected, then they cannot share the best solution found, lowering the optimal score.

- Eliminating all multi-clique networks confirms a negative (monotonic) relationship between network density and average long-term solution.

- Since average path length is negatively correlated with density, this supports the hypothesis that higher scores are a function of higher distance between nodes.

- Small World Networks

- Small world networks have local clustering but short average path lengths (Watts & Strogatz 1998).

- Increasing the average path length increases overall score.

- Conclusions

- There is a trade-off between networks that explore and exploitation. Network communication patterns can drive heterogeneity, which in turn can affect long-term social outcomes. More efficient communication networks can actually lower performance in the long run.

- Examples

 - Digital government project teams (Binz-Scharf 2003)
 - Technological diffusion (Diamond 1997)
 - Creative groups (Leenders et al. 2003)